Recherche et Développements et Technologies Comportement des Structures et Matériaux

BOUDIERE Edwige MAISONDIEU Christophe

reme

Janvier 2014 - RDT/LCSM/C&R14LCSM301/EB/CM

Manuel de l'utilisateur de la base de données HOMERE

Description de la base de données HOMERE sur la zone Manche-Golfe de Gascogne (NGUG-v3)

VERSION PUBLIQUE

Manuel de l'utilisateur de la base de données HOMERE

Description de la base de données HOMERE sur la zone Manche-Golfe de Gascogne (NGUG-v3)

VERSION PUBLIQUE

janvier 2014

1. Introduction	. 9
2. Description du modèle	. 9
 2.1. Paramétrage du modèle	9 10 12 13 13 14 14
3. Paramètres en sortie du modèle	16
 3.1. Paramètres globaux	16 17 19 19 31 31 32 32 32 33
4. Validation du Modèle	35
 4.1. Comparaison avec les mesures in situ	35 35 36 37 37 38 39 39 39 40 40 40
References	43
ANNEXES	45
Meshin : critères choisis pour le raffinement du maillage :	45

sommaire

Table des figures :

Fig. 1 : Maillage NGUG-v3	10
Fig. 2 : Polygones du maillage	11
Fig. 3 : Bathymétrie du domaine NGUG	12
Fig. 4 : Localisation des spectres directionnels pour le forçage aux limites mouillées	13
Fig. 5 : Domaine des modèles de calcul des courants et niveaux d'eau. Rangs 0 et 1 à gauch	he,
rang 1 et rangs 2 à droite	15
Fig. 6 : Points de sortie des champs de paramètres globaux sur le domaine NGUG	16
Fig. 7 : Convention des directions pour les directions des paramètres globaux, vague de	
direction 0°	17
Fig. 8 : Points de sortie spectre sur le domaine NGUG-v3 (en bleu)	19
Fig. 9 : Points de sortie spectre sur les sites des mesures in situ (en bleu)	20
Fig. 10 : Points de sortie du modèle de la NOAA	22
Fig. 11 : Points de sortie modèles IOWAGA	25
Fig. 12 : Points de sortie spectres 2D pour les projets EMR	29
Fig. 13 : Convention pour les directions des spectres directionnels, vague de direction 0°	31
Fig. 14 : Mesures in situ utilisées pour la validation du modèle	35
Fig. 15 : Exemple de comparaison graphique entre la bouée 62067 et le modèle	37
Fig. 16 : Traces des passages des satellites sur le domaine de calcul entre 2007 et 2009	38
Fig. 17 : Sites retenus pour les validations entre HOMERE et la NOAA	40

Table des tableaux :

Description des Modèles de Niveaux d'Eau et de Courants	15
Description des Paramètres Globaux Issus du Modèle	17
Liste des Points Spectres Localisés sur les sites des Mesures In Situ	20
Liste des Points Spectres Localisés sur les sites des Mesures In Situ (Suite)	21
Liste des Points de Sorties du Modèle de la NOAA	22
Liste des Points de Sorties du Modèle de la NOAA (suite)	23
Liste des Points de Sorties du Modèle de la NOAA (suite)	24
Points Spectre du Modèle Mer d'Iroise	25
Points Spectre du Modèle Golfe de Gascogne	26
Points Spectre du Modèle Breizh	26
Points Spectre du Modèle EUSKA	27
Points Spectre du Modèle Manche-Seine	27
Points Spectre du Modèle Oléron	27
Points Spectre du Modèle Morbihan	28
Points Spectre du Modèle GLOBAL	28
Projets EMR	30
Matrice efth A un Instant t	31
Variables Presentes Dans le Fichier de Spectre 1D "Bulk"	33
Validations effectuées avec les mesures in situ	36
Caractéristiques des Différentes Missions Satellites	38
Comparaison des Hs avec les Données Satellites	
Comparaison des Vitesses de Vent avec les Données Satellites	
Comparaison Modeles NOAA et HOMERE (Hs)	40

7

1. Introduction

L'objectif de cette note est de présenter la base de données HOMERE, créée au sein de l'IFREMER dans le cadre du projet Energies Marines Renouvelables (EMR).

Cette note décrit dans un premier temps la configuration du mofdèle utilisée pour les simulations d'état de mer ainsi que les données de forçages. Les différents types de données de sorties y sont ensuite décrits. En dernière partie sont présentées les validations effectuées sur cette base de données.

2. Description du modèle

2.1. Paramétrage du modèle

La construction de la base de données a été réalisée à l'aide du code de calcul WAVEWATCH III[®] (WW3) dans sa version 4.09. WW3 est un modèle spectral de simulation d'états de mer de troisième génération basé sur l'équation de conservation de la densité d'action de la houle. Le schéma de propagation utilisé dans cette configuration est un schéma de propagation explicite pour grille déstructurée [Roland, 2008; Roland, 2009]. L'utilisation de mailles déstructurées permet d'adapter la résolution du maillage aux différentes échelles contenues dans le domaine (cf. paragraphe 2.2) allant de la zone côtière (mailles raffinées de ~200m) au large (mailles de ~10km).

Le paramétrage utilisé dans cette configuration pour la génération et la dissipation des vagues [Ardhuin, 2009a ; Ardhuin, 2010] est celui développé lors du projet de recherche IOWAGA (Integrated Ocean WAves for Geophysical and other Applications) et testé en mode prévision dans le cadre du démonstrateur opérationnel Previmer [Lecornu, 2008]. L'évolution et les interactions non-linéaires des vagues sont modélisées par la méthode DIA (Discrete Interaction Approximation) [Hasselmann, 1885].

La dissipation d'énergie par déferlement a été améliorée en s'appuyant sur les données d'observation satellitaire [Ardhuin, 2009] dont l'analyse a permis de faire la distinction entre le déferlement spontané (déferlement des vagues de forte cambrure) et le déferlement induit (déferlement des vagues de grande longueur d'onde dépassant les vagues de plus petite longueur d'onde) [Ardhuin, 2010]. Cette distinction entre déferlement induit et déferlement spontané a été introduite dans le modèle.

Le paramétrage des termes de dissipation sur le fond (BT4) a été amélioré. En particulier pour les fonds sableux, BT4 a été construit à partir du modèle de prédiction de rugosité des rides de Grant et Madsen [Grant, 1982], développé à partir de données de laboratoire. Ce modèle a été étendu aux spectres de vague [Madsen, 1988] sous un régime de 'sheet flow' (régime où les rides sont effacées) en s'appuyant sur le modèle de Wilson [Wilson, 1989]. Puis, une forme adaptée de l'algorithme de Tolman [Tolman 1995] a été intégrée au modèle pour une meilleure prise en compte de la génération de rides et de la rugosité des rides reliques, grâce à une sous grilles qui attribue à chaque maille une fraction de la couverture de rides [Ardhuin, 2003], et qui s'applique à une granulométrie plus étendue. Le fichier SED_108.txt contenant la granulométrie des sédiments implémentée dans le modèle se trouve dans le dossier : (\\XX) nerzharmor\Projets\HOMERE\NGUG-v3\input_data.

Les spectres directionnels sont discrétisés sur 24 directions (secteurs angulaires de 15°) et sur 32 fréquences (comprises entre 0.0373 Hz to 0.7159 Hz).

2.2. Le maillage

Fig. 1 : Maillage NGUG-v3

Le maillage déstructuré du domaine NGUG-v3 (Fig. 1) est constitué de plusieurs sous-parties, ou polygones (cf. Fig. 1), dans lesquelles les critères de raffinement ont été définis (cf. document "meshin" en annexe du rapport) en fonction des variations bathymétriques et de la vitesse de propagation (condition CFL). Ces critères ont permis une optimisation du temps de calcul en limitant la taille des plus petites mailles. Le critère de variation bathymétrique MAXDZ est défini par :

10

$$A_{new} = \frac{MAXDZ}{DZ} A_{old} \tag{1}$$

Où $A_{new}(m^2)$ est l'aire du nouveau triangle calculé, MAXDZ(m) représente la variation bathymétrique maximale souhaitée par triangle (constante donnée par l'utilisateur) et DZ(m) représente la variation bathymétrique dans l'élément $A_{old}(m^2)$.

Le critère CFL est défini par :

$$C_{g}\Delta t = \Delta x \tag{2}$$

Où C_g est la vitesse de groupe limite (constante définie par l'utilisateur), Δt est le pas de temps et Δx est la distance entre deux points du maillage.

Le maillage déstructuré utilisé est composé de plus de 110000 nœuds de calcul et couvre un large domaine allant du Sud de la mer du Nord jusqu'au Golfe de Gascogne.

Fig. 2 : Polygones du maillage

2.3. La bathymétrie utilisée

Les simulations d'états de mer ont été réalisées sur une bathymétrie de haute résolution qui s'étend du Sud de la mer du Nord à l'ensemble du plateau continental du Golfe de Gascogne (appelé NGUG dans ce document). La bathymétrie a été obtenue grâce aux données provenant du SHOM (Service Hydrographique et Océanographique de la Marine) pour le trait de côte et des campagnes de mesures menées par l'IFREMER et le SHOM pour l'ensemble du domaine (MNT 100m et 500m [Loubrieu, 2008]). Certains sites tels que le bassin d'Arcachon, la Baie des Veys, le plateau des Minquiers et l'estuaire de la Gironde ont nécessité quelques corrections pour lesquelles ont été utilisées des données de levées bathymétriques spécifiques.

Fig. 3 : Bathymétrie du domaine NGUG

lfremer

2.4. Les données de forçage du modèle

2.4.1. Conditions aux limites mouillées

Le forçage aux limites du domaine NGUG est réalisé par implémentation des spectres directionnels issus des simulations du modèle global IOWAGA sur les bords « mouillés » du domaine, avec un pas de temps de 1 heure.

Fig. 4 : Localisation des spectres directionnels pour le forçage aux limites mouillées

2.4.2. Champs de vent

Les champs de vents utilisés comme données de forçage du modèle sont issus des réanalyses CFSR (Climate Forecast System Reanalysis, [Saha, 2010]) réalisées en 2010 par le NCEP (National Center for Environmental Prediction). Ces champs de vents ont été réanalysés sur la période 1979-2009. Leur résolution spatiale varie de 0.25° au niveau de l'équateur jusque 0.5° pour les plus hautes latitudes.

Le modèle est forcé avec un pas de temps de 6 heures.

2.4.3. Courants et niveaux d'eau

2.4.3.1. Description des modèles de courants

Les courants, niveaux d'eau et surcotes ont été calculés à l'aide du code hydrodynamique MARS 2D (Model for Applications at Regional Scale), développé par l'IFREMER [Lazure & Dumas, 2008] et basé sur les équations en eau peu profonde. Les sept modèles mis en place sont des modèles emboîtés (3 niveaux d'emboîtement : rang 0, rang 1 et rang 2) dont la résolution diffère suivant le rang (cf. détails dans le Tableau 1 et Fig. 5).

Une étude a permis de comparer différents paramétrages du coefficient de traînée; la formulation de Charnock [Charnock 1955] avec coefficient de Charnock variable obtient les meilleurs résultats [Müller et al, 2012]. Ce coefficient de Charnock variable est issu du modèle de vagues WW3 et dépend du vent et des vagues. Cette formulation optimale a été retenue pour la modélisation des niveaux et courants.

Concernant le forçage de marée, le modèle de rang 0 est forcé par le modèle FES2004 du LEGOS [Lyard et al, 2006], avec 14 composantes harmoniques de marée. Le modèle de rang 1 est imbriqué dans le modèle de rang 0, ainsi, les hauteurs et courants issus du modèle de rang 0 forcent le rang 1. Les modèles de rang 2 sont quant à eux forcés par le modèle de marée cstFRANCE du SHOM [Simon, 2007], qui contient 115 composantes harmoniques.

De plus, les surcotes issues du rang 1 sont imposées aux limites des modèles de rang 2. Cette méthodologie (forçage des rangs 2 par le modèle de marée cstFRANCE et des surcotes issues du rang 1) permet une meilleure estimation des hauteurs et courants pour le rang 2.

Les données de Météo-France ont été utilisées pour le forçage météorologique. Les rangs 0 et 1 sont forcés en utilisant les données du modèle météorologique ARPEGE 0.5° [Courtier, 1991; Courtier, 1994] avec un pas de temps de six heures (en 2008). Les modèles de rang 2 sont forcés avec les données issues du modèle météorologique AROME 0.025° [Seity, 2011] avec un pas de temps d'une heure.

Rang	Résolution Spatiale (m)	Résolution Temporelle (min)	Modèle	Nom
0	2000	60	Atlantique Nord Est	ATLNE2000
1	700	60	Manche et Golfe de Gascogne	MANGA700
2	250	15	Côte Aquitaine	AQUI250
2	250	15	Manche Est	MANE250
2	250	15	Manche Ouest	MANW250
2	250	15	Mer d'Iroise	FINIS250
2	250	15	Bretagne Sud	SUDBZH250

TABLEAU I
DESCRIPTION DES MODÈLES DE NIVEAUX D'EAU ET DE COURANTS

Fig. 5 : Domaine des modèles de calcul des courants et niveaux d'eau. Rangs 0 et 1 à gauche, rang 1 et rangs 2 à droite

2.4.3.2. Analyse des harmoniques de l'onde de marée

Afin d'alléger le traitement des données de courants et de niveaux d'eau produits par les modèles emboîtés, un atlas de composantes harmoniques a été réalisé. Un rejeu de hauteurs d'eau et courants a été réalisé sur une année (2008). L'analyse harmonique des hauteurs et courants pour chacun des sept modèles a permis de mettre en place des atlas de composantes harmoniques. La marée et les courants de marée peuvent alors être évalués pour chaque année sur l'ensemble du domaine. Les courants et les niveaux d'eau sont calculés toutes les 30 minutes et sont interpolés sur le maillage du modèle de vagues.

Les fichiers contenant les harmoniques de l'onde de marée sont nommés :

- current.ww3_tide, pour les courants,
- level.ww3_tide, pour les niveaux d'eau.

3. Paramètres en sortie du modèle

Les données de sorties et conventions sont décrites dans le manuel [Tolman, 2009a] et sur le wiki : https://forge.ifremer.fr/plugins/mediawiki/wiki/ww3/index.php/En:file_formats.

3.1. Paramètres globaux

3.1.1. Grille de sortie

Les paramètres globaux en sorties de modèles sont relevés en chacun des nœuds du maillage NGUG. Le maillage compte plus de 110000 nœuds, mais comporte des nœuds sur le trait de côte. Sur ces nœuds le calcul n'est pas effectué.

Fig. 6 : Points de sortie des champs de paramètres globaux sur le domaine NGUG

3.1.2. Description des paramètres globaux

La convention utilisée pour les différentes directions pour les paramètres globaux est la <u>convention</u> <u>nautique.</u> La direction est la direction <u>de provenance</u>.

Fig. 7 : Convention des directions pour les directions des paramètres globaux, vague de direction 0°

Variable Name	Standard Name	Units	Variable Name	Standard Name	Units
cur ¹	sea water velocity	m s ⁻¹	fbb	wave dissipation in bbl	W m ⁻²
wnd ²	wind speed	m s ⁻¹	tbb ³	wave to bbl stress	$m^2 s^{-2}$
hs	spectral estimate of significant wave	m	sxy/sxx/syy	Radiation stress	N m ⁻¹
wlv	sea surface height above sea level	m	two ⁴	wave to ocean stress	$m^2 s^{-2}$
t02	mean period Tm02	S	foc	wave to ocean energy flux	$W m^{-2}$
t0m1	period T0-1	S	tus ⁵	stokes transport	$m^2 s^{-1}$
cge	wave energy flux	kW m⁻¹	uss ⁹	surface stokes drift	m s ⁻¹
fp	wave peak frequency	s^{-1}	mss ¹⁰	mean square slope	1
dir	wave mean direction	degree	msc ¹¹	phillips constant	1

TABLEAU II Description des Paramètres Globaux Issus du Modèle

Variable Name	Standard Name	Units	Variable Name	Standard Name	Units
spr	directional spread	degree	ptp[0->5]	wave system dominant wave period	S
dp	peak direction	degree	phs[0->5]	wave systems significant wave height	m
ust ⁶	friction velocity	m s ⁻¹	pdir[0->5]	wave mean direction partition	degree
cha	charnock coefficient	1	pspr[0->5]	directional spread partition	degree
faw	wind to wave energy flux	$W m^{-2}$	wcm	whitecap moment	1
taw ⁷	wave supported wind stress	$m^2 s^{-2}$	abr ¹²	rms of bottom displacement amplitude	m
twa ⁸	wave to wind stress	$m^2 s^{-2}$	ubr ¹³	rms of bottom velocity amplitude.	m s ⁻¹
wch	significant breaking wave height	m	ripple ¹⁴	ripple wavelength	m
bed	velocity amplitude zonal	m	pp2s	peak period of power spectral density of equivalent surface pressure	m^4
fp2s	power spectral density of equivalent surface pressure	m^4			

- 1. $cur = sqrt(ucur^2 + vcur^2)$
- 2. wnd = sqrt($uwnd^2 + vwnd^2$)
- 3. $tbb = sqrt(utbb^2 + vtbb^2)$
- 4. $two = sqrt(utwo^2 + vtwo^2)$
- 5. $tus = sqrt(utus^2 + vtus^2)$
- 6. $ust = sqrt(uust^2 + vust^2)$
- 7. $taw = sqrt(utaw^2 + vtaw^2)$
- 8. $twa = sqrt(utwa^2 + vtwa^2)$

- 9. $uss = sqrt(uuss^2 + vuss^2)$
- 10. mss = mssx + mssy
- 11. msc = mscx + mscy
- 12. $abr = sqrt(uabr^2 + vabr^2)$
- 13. $ubr = sqrt(uubr^2 + vubr^2)$
- 14. | ripple | = sqrt(ripplex² + rippley²)

Nomenclature des fichiers de sortie de paramètres globaux

dossier: (\\XX) /.../GRIDDED/yyyy/mm/

nom du fichier : HOMERE_NGUG-v3_ yyyymm.nc

exemple : Pour obtenir le fichier de paramètres globaux pour le mois de janvier 2009, il faut aller dans le dossier (XX) /.../GRIDDED/2009/01/

le fichier portera le nom de HOMERE_NGUG-v3_200901.nc

3.2. Spectres directionnels

3.2.1. Points de sortie de spectres directionnels

La grille des spectres directionnels de sortie comporte 4096 points incluant la localisation: - des sites de mesures in situ

- des points de sortie de modèles numériques (IOWAGA, NOAA, ...)

- des sites EMR (sites d'essais en mer, projets EMR opérationels ou à venir)

Fig. 8 : Points de sortie spectre sur le domaine NGUG-v3 (en bleu)

Les points spectres ne se situant pas sur les nœuds de calcul (nœuds du maillage) sont interpolés.

Tous ces points sont représentés dans le fichier google earth spectra_outputs_NGUG-v3.kmz.

3.2.1.1. sites de mesures in situ

Fig. 9 : Points de sortie spectre sur les sites des mesures in situ (en bleu)

TABLEAU III

LISTE DES POINTS SPECTRES LOCALISÉS SUR LES SITES DES MESURES IN SITU

Nom	Lat.	Long.	Nom	Lat.	Long.
DW1SHOM12	48.0057	-4.9223	VECTOR	48.0316	-4.8610
DW2SHOM12	48.0808	-4.9210	VLISSINGEN	52.2667	4.3
DW3SHOM12	48.1504	-4.3495	EPAVES	49.4552	-0.0475
DW4SHOM12	48.2467	-5.1500	FOSSE	49.4399	-0.2154
DW5SHOM12	48.4278	-5.0279	RATELETS	49.4213	-0.0308
AW1SHOM12	48.0312	-4.8635	RATIER	49.4139	-0.1086
AW2SHOM12	48.0270	-4.8136	LORIENT	47.704	-3.4775
AQP1PROTEVS	48.4285	-5.0146	BELLE-ILE	47.3	-3.3
AQP2PROTEVS	48.0538	-4.9261	OUESSANT1	48.41	-5.17
AQP4PROTEVS	48.0366	-4.9210	OUESSANT2	48.38	-5.17
MAREE1	48.4003	-5.0512	OUESSANT3	48.38	-5.21
MAREE2	48.0642	-4.8501	FROMVEUR	48.44	-5.03
MARRE3	48.0180	-4.8693	LIBENTER	48.63	-4.64
MAREE4	48.3596	-4.7919	SEIN	48.05	-4.8
MAREE5	48.3213	-4.6180	RADEBREST	48.31	-4.65
HELLE	48.45	-4.92	GUISSENY1	48.67294	-4.4941666
DOUARNENEZ	48.135	-4.5	GUISSENY2	48.65088	-4.4587694
AUDIERNE	47.885	-4.5	OUESSANT4	48.44359	-5.07719
MILIEU	48.3333	-5.75	OUESSANT5	48.45290	-5.04658
MIL2	48.3333	-5.5	D-DAY	49.51	-0.75
LECONQUET	48.3557	-4.8042	SUD-BZH	47.5	-3.75
GOULET	48.3322	-4.5993	TRIELENE	48.3767	-4.9283

tableau I	V
------------------	---

LISTE DES POINTS SPECTRES LOCALISÉS SUR LES SITES DES MESURES IN SITU (SUITE)

Nom	Lat.	Long.		Nom	Lat.	Long.
62023	51.4	-7.9		ANGLET	43.5298	-1.6135
62024	43.733	-3.033		MINQUIERS	48.8925	-2.443
62044	51.571	1.58		MINQUIERSN	48.9884	-2.343
62052	48.5	-5.8		ANTIFER	49.65	-0.1292
62059	49.695	-1.62		SANDETTIE	51.1	1.8
62060	49.65	0.13		Matxitxako	43.64	-2.7
62061	48.89	-2.44		Donostia	43.56	-2.0126
62064	44.65	-1.45		SEMREVE	47.239	-2.771
62067	46.83	-2.29		SEMREVO	47.239	-2.786
62069	48.2857	-4.9684		SEMREVBI	47.285	-3.285
62094	51.7	-6.7		AQ3	48.7836	-1.84955
62101	50.60	-2.70		AWAC	48.7335	-1.8416
62103	49.9	-2.9		SA1	48.63	-1.81166
62107	50.1	-6.1		FROMVAR2011	48.17	-5.17
62170	51.4	2		DW106	48.5095	-5.2568
62288	50.745	0.753		DW206	48.4973	-5.1382
62303	51.5	-5.1		ADCP2008	48.2292	-5.1725
62304	51.15	1.8		AQPDinan	48.24	-4.575
62305	50.4	0		AQPPorsp	48.46	-4.8783335
CHERBOURG	49.695	-1.62		DWBERTHE	48.3455	-4.6718335
Vergoyer	50.655	1.37		DWBS	48.38	-4.7833333
Ruytinger	51.16	1.76		DWIROISE	48.171665	-4.758333
Havre2	49.522	-0.161		DWAUDIERNE	47.9203	-4.7250
Roscoff	48.716	-3.96		DWFOUR	48.4875	-4.8733
PFour	47.239	-2.787		VECBerth	48.3385	-4.6578335
PENMARCH	47.65	-4.45		VECBS	48.373332	-4.7683334
EURO	51.99	3.27		VECGoulien	48.24575	-4.556
Poole	50.6335	-1.7183		VECPalue	48.2005	-4.56
ScheurOost	51.4043	3.302		DW1	48.89	-2.44
ScheurWest	51.393	3.048		DW2	48.88	-2.13
Schouwenbank	51.7474	3.3055		DW3	48.83	-1.90
Sizewell	52.2097	1.6848		DW4	48.78	-1.75
VlaktevdRaan	51.5052	3.2422		OLERON	45.8405	-1.8132
WestGabbard	51.9802	2.0807		OLERON2	46.1065	-1.5869
Westhinder	51.3844	2.4444		BANNEG1	48.4307	-5.0224
CROISIC1	47.2	-2.5	l	BANNEG2	48.4231	-5.0224
YEU	46.6767	-2.3833		TRIELENW	48.3699	-4.9599
SEMREV	47.285	-3.285				

51.5

51.5

51.5

-4.0

-4.5

-5.0

N-E30N5250

N-E25N5250

N-E20N5250

52.5

52.5

52.5

3.0

2.5

2.0

points de sortie du odèle de la NOAA

1.8

Fig. 10 : Points de sortie du modèle de la NOAA

TABLEAU V

-5.4

3.2.1.2. points de sorties de modèles numériques

N-W40N5150

N-W45N5150

N-W50N5150

			7			
Nom	Lat.	Long		Nom	Lat.	Long
N-W75N5200	52.0	-7.5		N-W35N4350	43.5	-4.0
N-W62N5200	52.0	-6.25		N-W40N4350	43.5	-4.5
N-E25N5200	52.0	2.5		N-W45N4350	44.0	-1.5
N-E37N5200	52.0	3.75		N-W15N4400	44.0	-2.0
N-W75N5100	51.0	-7.5		N-W20N4400	44.0	-3.0
N-W62N5100	51.0	-6.25		N-W30N4400	44.0	-3.5
N-W50N5100	51.0	-5.0		N-W35N4400	44.0	-4.0
N-E12N5100	51.0	1.25		N-W40N4400	44.0	-4.5
N-W75N5000	50.0	-7.5		N-W45N4400	44.5	-1.5
N-W62N5000	50.0	-6.25		N-W15N4450	44.5	-2.0
N-W50N5000	50.0	-5.0		N-W20N4450	44.5	-2.5
N-W37N5000	50.0	-3.75		N-W25N4450	44.5	-3.0
N-W25N5000	50.0	-2.5		N-W30N4450	44.5	-3.5
N-W12N5000	50.0	-1.25		N-W35N4450	44.5	-4.0
N-E0N5000	50.0	0.0		N-W40N4450	44.5	-4.5
N-E12N5000	50.0	1.25		N-W45N4450	45.0	-1.5
N-W75N4900	49.0	-7.5		N-W15N4500	45.0	-2.0
N-W62N4900	49.0	-6.25		N-W20N4500	45.0	-3.0
N-W50N4900	49.0	-5.0		N-W30N4500	45.0	-3.5
N-W37N4900	49.0	-3.75		N-W35N4500	45.0	-4.0
N-W25N4900	49.0	-2.5		N-W40N4500	45.0	-4.5
N-W75N4800	48.0	-7.5		N-W45N4500	45.5	-1.0
N-W62N4800	48.0	-6.25		N-W10N4550	45.5	-1.5
N-W50N4800	48.0	-5.0		N-W15N4550	45.5	-2.0
N-W75N4700	47.0	-7.5		N-W20N4550	45.5	-2.5
N-W62N4700	47.0	-6.25		N-W25N4550	45.5	-3.0
N-W50N4700	47.0	-5.0		N-W30N4550	45.5	-3.5
N-W37N4700	47.0	-3.75		N-W35N4550	45.5	-4.0
N-W25N4700	47.0	-2.5		N-W40N4550	45.5	-4.5
N-W37N4600	46.0	-3.75		N-W45N4550	46.0	-1.5
N-W25N4600	46.0	-2.5		N-W15N4600	46.0	-2.0
N-W12N4600	46.0	-1.25		N-W20N4600	46.0	-3.0
N-W37N4500	45.0	-3.75		N-W30N4600	46.0	-3.5
N-W25N4500	45.0	-2.5		N-W35N4600	46.0	-4.0
N-W12N4500	45.0	-1.25		N-W40N4600	46.0	-4.5
N-W37N4400	44.0	-3.75		N-W45N4600	46.5	-2.0
N-W25N4400	44.0	-2.5		N-W20N4650	46.5	-2.5
N-W20N4350	43.5	-2.0		N-W25N4650	46.5	-3.0
N-W25N4350	43.5	-2.5		N-W30N4650	46.5	-3.5
N-W30N4350	43.5	-3.0		N-W35N4650	43.5	-4.0
N-W30N5050	50.5	-3.0		N-W10N5050	50.5	-1.0
N-W35N5050	50.5	-3.5		N-W15N5050	50.5	-1.5
N-W55N5050	50.5	-5.5		N-W20N5050	50.5	-2.0

TABLEAU VI

LISTE DES POINTS DE SORTIES DU MODÈLE DE LA NOAA (SUITE)

Nom	Lat.	Long	Nom	Lat.	Long.
N-W40N4650	46.5	-4.0	N-W35N4900	49.0	-3.5
N-W45N4650	46.5	-4.5	N-W40N4900	49.0	-4.0
N-W50N4650	46.5	-5.0	N-W45N4900	49.0	-4.5
N-W55N4650	46.5	-5.5	N-W55N4900	49.0	-5.5
N-W60N4650	46.5	-6.0	N-W60N4900	49.0	-6.0
N-W65N4650	46.5	-6.5	N-W65N4900	49.0	-6.5
N-W70N4650	46.5	-7.0	N-W70N4900	49.0	-7.0
N-W75N4650	46.5	-7.5	N-E0N4950	49.5	0.0
N-W30N4700	47.0	-3.0	N-W5N4950	49.5	-0.5
N-W35N4700	47.0	-3.5	N-W10N4950	49.5	-1.0
N-W40N4700	47.0	-4.0	N-W20N4950	49.5	-2.0
N-W45N4700	47.0	-4.5	N-W25N4950	49.5	-2.5
N-W55N4700	47.0	-5.5	N-W30N4950	49.5	-3.0
N-W60N4700	47.0	-6.0	N-W35N4950	49.5	-3.5
N-W65N4700	47.0	-6.5	N-W40N4950	49.5	-4.0
N-W70N4700	47.0	-7.0	N-W45N4950	49.5	-4.5
N-W25N4750	47.5	-2.5	N-W50N4950	49.5	-5.0
N-W30N4750	47.5	-3.0	N-W55N4950	49.5	-5.5
N-W35N4750	47.5	-3.5	N-W60N4950	49.5	-6.0
N-W40N4750	47.5	-4.0	N-W65N4950	49.5	-6.5
N-W45N4750	47.5	-4.5	N-W70N4950	49.5	-7.0
N-W50N4750	47.5	-5.0	N-W75N4950	49.5	-7.5
N-W55N4750	47.5	-5.5	N-E10N5000	50.0	1.0
N-W60N4750	47.5	-6.0	N-E5N5000	50.0	0.5
N-W65N4750	47.5	-6.5	N-W5N5000	50.0	-0.5
N-W70N4750	47.5	-7.0	N-W10N5000	50.0	-1.0
N-W75N4750	47.5	-7.5	N-W15N5000	50.0	-1.5
N-W45N4800	48.0	-4.5	N-W20N5000	50.0	-2.0
N-W55N4800	48.0	-5.5	N-W30N5000	50.0	-3.0
N-W60N4800	48.0	-6.0	N-W35N5000	50.0	-3.5
N-W65N4800	48.0	-6.5	N-W40N5000	50.0	-4.0
N-W70N4800	48.0	-7.0	N-W45N5000	50.0	-4.5
N-W50N4850	48.5	-5.0	N-W55N5000	50.0	-5.5
N-W55N4850	48.5	-5.5	N-W60N5000	50.0	-6.0
N-W60N4850	48.5	-6.0	N-W65N5000	50.0	-6.5
N-W65N4850	48.5	-6.5	N-W70N5000	50.0	-7.0
N-W70N4850	48.5	-7.0	N-E15N5050	50.5	1.5
N-W75N4850	48.5	-7.5	N-E10N5050	50.5	1.0
N-W20N4900	49.0	-2.0	N-E5N5050	50.5	0.5
N-W30N4900	49.0	-3.0	N-E0N5050	50.5	0.0
N-W25N5050	50.5	-2.5	N-W5N5050	50.5	-0.5

TABLEAU VII

LISTE DES POINTS DE SORTIES DU MODÈLE DE LA NOAA (SUITE)

Points spectres des modèles numériques de la base de donnée IOWAGA 3.2.1.2..2

TABLEAU	VIII
---------	------

			1 1			
Nom	Lat.	Long		Nom	Lat.	Long
W004N489	48.9	-4.0		W006N486	48.6	-6.0
W0042N489	48.9	-4.2		W006N488	48.8	-6.0
W0044N489	48.9	-4.4		W006N489	48.9	-6.0
W0046N489	48.9	-4.6		W0058N476	47.6	-5.8
W0048N489	48.9	-4.8		W0056N476	47.6	-5.6
W005N489	48.9	-5.0		W0054N476	47.6	-5.4
W0052N489	48.9	-5.2		W0052N476	47.6	-5.2
W0054N489	48.9	-5.4		W005N476	47.6	-5.0
W0056N489	48.9	-5.6		W0048N476	47.6	-4.8
W0058N489	48.9	-5.8		W0046N476	47.6	-4.6
W006N476	47.6	-6.0		W0044N476	47.6	-4.4
W006N478	47.8	-6.0		W0042N476	47.6	-4.2
W006N480	48.0	-6.0		W004N488	48.8	-4.0
W006N482	48.2	-6.0		W004N476	47.6	-4.0
W006N484	48.4	-6.0		W004N477	47.7	-4.0

POINTS SPECTRE DU MODÈLE MER D'IROISE

POINTS SPECTRE DU MODÈLE GOLFE DE GASCOGNE								
Nom	Lat.	Long		Nom	Lat.	Long.		
W0045N479	47.9	-4.5		W0034N474	47.4	-3.4		
W0046N477	47.7	-4.6		W0033N473	47.3	-3.3		
W0047N476	47.6	-4.7		W0033N472	47.2	-3.3		
W0048N474	47.4	-4.8		W0032N471	47.1	-3.2		
W0045N473	47.3	-4.5		W0030N470	47.0	-3.0		
W0042N472	47.2	-4.2		W0029N468	46.8	-2.9		
W0039N471	47.1	-3.9		W0027N467	46.7	-2.7		
W0036N47	47.0	-3.6		W0027N466	46.6	-2.7		
W0033N469	46.9	-3.3		W0025N466	46.6	-2.5		
W003N468	46.8	-3.0		W0024N465	46.5	-2.4		
W0021N465	46.5	-2.1		W0023N465	46.5	-2.3		
W002N467	46.7	-2.0		W0022N465	46.5	-2.2		
W0024N466	46.6	-2.4		W0021N466	46.6	-2.1		
W0032N476	47.6	-3.2		W0020N466	46.6	-2.0		
W0032N475	47.5	-3.2		W0019N467	46.68	-1.94		
W0033N475	47.5	-3.3						

TABLEAU IX

TABLEAU X

POINTS SPECTRE DU MODÈLE BREIZH

Nom	Lat.	Long	Nom	Lat.	Long.
W0005N494	49.4	-0.5	W0075N495	49.50	-7.5
W0005N496	49.6	-0.5	W0075N49	49.0	-7.5
W0005N498	49.8	-0.5	W0075N485	48.5	-7.5
W0005N50	50	-0.5	W0075N48	48	-7.5
W0005N502	50.2	-0.5	W0075N475	47.5	-7.5
W0005N504	50.40	-0.5	W0075N47	47	-7.5
W0005N506	50.60	-0.5	W0075N465	46.50	-7.5
W0005N507	50.7	-0.5	W007N465	46.50	-7
W0047N51	51	-4.7	W0065N465	46.50	-6.5
W0048N51	51	-4.8	W006N465	46.50	-6
W005N51	51	-5	W0055N465	46.50	-5.5
W0052N51	51	-5.2	W005N465	46.50	-5
W0054N51	51	-5.4	W0048N465	46.50	-4.8
W0056N51	51	-5.6	W0046N465	46.50	-4.6
W0058N51	51	-5.8	W0044N465	46.50	-4.4
W006N51	51	-6	W0042N465	46.50	-4.2
W0065N51	51	-6.50	W004N465	46.50	-4
W007N51	51	-7	W0035N465	46.50	-3.5
W0075N51	51	-7.5	W0028N465	46.50	-2.8
W0075N505	50.5	-7.5	W0026N465	46.50	-2.6
W0075N50	50	-7.5	W0019N465	46.50	-1.9

POINTS SPECTRE DU MODELE EUSKA									
Nom	Lat.	Long.		Nom	Lat.	Long.			
EUSKAW1	43.36	-1.99		EUSKAN3	43.57	-1.89			
EUSKAW2	43.39	-1.99		EUSKAN4	43.57	-1.85			
EUSKAW3	43.41	-1.99		EUSKAN5	43.57	-1.81			
EUSKAW4	43.44	-1.99		EUSKAN6	43.57	-1.77			
EUSKAW5	43.47	-1.99		EUSKAN7	43.57	-1.73			
EUSKAW6	43.50	-1.99		EUSKAN8	43.57	-1.69			
EUSKAW8	43.53	-1.99		EUSKAN9	43.57	-1.65			
EUSKAW9	43.56	-1.99		EUSKAN10	43.57	-1.61			
EUSKAN1	43.57	-1.97		EUSKAN11	43.57	-1.57			
EUSKAN2	43.57	-1.93							

TABLEAU XI

OINTS SPI	ECTRE DU	I MODÈLE	EUSKA

TABLEAU XII

POINTS SPECTRE DU MODÈLE MANCHE-SEINE

Nom	Lat.	Long	Nom	Lat.	Long.
W0017N497	49.7	-1.8	W0003N501	50.1	-0.3
W0017N498	49.8	-1.7	W0001N501	50.1	-0.1
W0015N50	50.0	-1.5	W000N501	50.1	0.0
W0013N501	50.1	-1.3	E0002N50	50.0	0.2
W001N502	50.2	-1.0	E0003N50	50.0	0.3
W0009N502	50.2	-0.9	E0004N499	49.9	0.4
W0007N502	50.2	-0.7	E0005N499	49.9	0.5
W0004N501	50.1	-0.4			

TABLEAU XIII

POINTS SPECTRE DU MODÈLE OLÉRON

Nom	Lat.	Long	Nom	Lat.	Long.
W0014N457	45.70	-1.4	W0018N459	45.90	-1.8
W0015N457	45.70	-1.5	W0018N45	46.00	-1.8
W0016N457	45.70	-1.6	W0018N461	46.10	-1.8
W0017N457	45.70	-1.7	W0018N462	46.20	-1.8
W0018N457	45.70	-1.8	W0018N463	46.30	-1.8
W0018N458	45.80	-1.8	W0018N464	46.40	-1.8

POINTS SPECTRE DU MODELE MORBIHAN							
Nom	Lat.	Long	Nom	Lat. Long.			
W0022N467	46.7	-2.2	W0033N471	47.1 -3.3			
W0023N466	46.6	-2.3	W0035N472	47.2 -3.5			
W0027N468	46.8	-2.7	W0034N473	47.3 -3.4			
W0029N469	46.9	-2.9	W0033N474	47.4 -3.3			
W0031N47	47.0	-3.1					

TABLEAU XIV

POINTS SPECTRE DU MODÈLE MORBIHAN

TABLEAU XV

POINTS SPECTRE DU MODÈLE GLOBAL

Nom	Lat.	Long	Nom	Lat.	Long.
W004N475	47.5	-4	W0027N472	47.24	-2.78
W003N465	46.5	-3	W004N49	49.0	-4.0
W0025N46	46	-2.5	W004N492	49.2	-4.0
W0023N455	45.5	-2.3	W004N494	49.4	-4.0
W0019N45	45	-1.9	W004N496	49.6	-4.0
W0017N445	44.5	-1.7	W004N498	49.8	-4.0
W0017N44	44	-1.7	W004N50	50.0	-4.0
W0039N491	49.1	-3.9	W004N502	50.2	-4.0
E0026N529	52.9	2.6	W0034N476	47.6	-3.4
E003N529	52.9	3	W0011N456	45.6	-1.1
E0034N529	52.9	3.4	W0045N445	44.5	-4.5
E0038N529	52.9	3.8	W0045N44	44	-4.5
E0042N529	52.9	4.2	W0045N447	44.7	-4.5
E0044N529	52.9	4.4	W008N513	51.3	-8
E0046N529	52.9	4.6	W0083N515	51.5	-8.300
W0045N46	46	-4.5	W0057N523	52.3	-5.7
W0045N455	45.5	-4.5	W0055N522	52.2	-5.5
W0045N45	45	-4.5			

3.2.1.3. Projets EMR

Fig. 12 : Points de sortie spectres 2D pour les projets EMR

TABLEAU XVI

PROJETS EMR

Nom	Lat.	Long.	Nom	Lat.	Long.
EMACOP-01	49.667	0.119	Gunfleet-2	51.730	1.212
EMACOP-02	49.674	-1.647	Greater-Gabbard	51.934	1.897
EMACOP-03	49.534	-1.896	Gunfleet-3	51.717	1.214
EMACOP-04	48.357	-4.788	London-1	51.634	1.526
EMACOP-05	47.998	-4.549	London-2	51.634	1.533
EMACOP-06	47.817	-4.391	severn-barrage	51.360	-3.099
EMACOP-07	46.685	-1.955	Galloper	51.733	1.9385
EMACOP-08	43.531	-1.533	Rampion	50.680	-0.241
EMACOP-09	43.397	-1.678	Scarweather-sand	ls 51.5	-3.781
FaBTest	50.0985	-4.998	Atlantic-array	51.375	-4.482
FaBtest-45m	50.1067	-4.978	Poole-Bay	50.665	-1.834
FaBtest-25m	50.1073	-4.996	eve-bimep	43.46	-2.885
SWMTF	50.0792	-5.0475	eve-mutriku	43.332	-2.372
Nortek-AWAC	50.370	-5.618	Helene	47.74	-4.385
wave-hub-a	50.308	-5.663	Boulogne	50.7	1.5
wave-hub-b	50.3097	-5.6725	3B	50.4	1.3
wave-hub-c	50.305	-5.670	bassure-de-Baas	50.3	1.3
wave-hub-d	50.311	-5.666	Hte-normandie	50.0	0.7
model-wave-hub	50.3	-5.61	veulettes	49.941	0.540
boy-wave-hub	50.308	-5.668	Fecamp-WPD	49.90	0.3
sem-ptS	47.232	-2.781	Fecamp-offshore	49.81	0.319
sem-ptN	47.245	-2.776	Baie-de-seine	49.47	-0.53
sem-ptW	47.239	-2.7897	courseulles-sur-m	er 49.47	-0.52
sem-ptE	47.239	-2.768	calcados	49.44	-0.553
sem-ptC	47.237	-2.779	cherbourg-hydrolie	enne 49.744	-1.596
sem-o	47.239	-2.786	neoen	49.289	-1.958
sem-e	47.239	-2.771	les-grunes	49.282	-1.766
semBl	47.285	-3.285	les-minquiers	48.76	-1.917
swansea-Docks	51.6	-3.92	saint-brieuc	48.84	-2.54
parc-d-aise	47.476	-3.312	vendee	46.85	-2.46
saint-nazaire	47.16	-2.6	porte-de-ree	46.262	-1.695
loire-atlantique	47.1	-2.5	brehat	48.908	-2.885
banc-de-guerande	47.040	-2.355	cotes-d-armor	48.80	-2.6
Thanet	51.42	1.614	winflo	47.7	-3.5
Kentish-Flats	51.45	1.133			

3.2.1.4. Autres points

Plus de 3000 points ont été créés en plus pour anticiper de futurs projets EMR mais aussi pour que cette base de données puisse être utilisée pour d'autres applications que les applications EMR. Le fichier google earth spectra_outputs_NGUG-v3.kmz contient la localisation des spectres.

3.2.2. Description des spectres 2D

La convention pour les directions du spectre directionnel n'est pas la même que pour les paramètres globaux. La direction donnée indique le <u>sens de propagation des vagues</u> (vers où les vagues vont).

Les matrices 3D des spectres directionnels efth [dir x freq x temps] à un instant t sont données de la manière suivante :

TABLEAU XVII MATRICE EFTH A UN INSTANT T

	freq(1)	freq(2)	 freq(32)
dir(1)=90°	efth(1,1,t)	efth(1,2,t)	 efth(1,32,t)
dir(2)=75°	efth(2,1,t)	efth(2,2,t)	 efth(2,32,t)
$dir(7)=0^{\circ}$	efth(7,1,t)	efth(7,2,t)	 efth(7,32,t)
dir(8)=345°	efth(8,1,t)	efth(8,2,t)	 efth(8,32,t)
dir(9)=330°	efth(9,1,t)	efth(9,2,t)	 efth(9,32,t)
dir(24)=105°	efth(24,1,t)	efth(24,2,t)	 efth(24,32,t)

Fig. 13 : Convention pour les directions des spectres directionnels, vague de direction 0°

3.2.3. Nomenclature des fichiers spectre2D

dossier: (\\XX)/.../SPECTRA/yyyy/mm/

nom du fichier : HOMERE_NGUG-v3_{nom du point}_yyyymm_spec.nc

exemple : Pour obtenir le fichier spectre du point portant le nom 62069 pour le mois de janvier 2009, il faut aller dans le dossier (XX) /.../SPECTRA/2009/01/

Le fichier portera le nom de HOMERE_NGUG-v3_62069_200901_spec.nc

NB : certains noms de points comptent plus de 12 caractères et ont donc été automatiquement coupés par WWIII[®].

3.3. Spectres en fréquence

3.3.1. Grille de sortie

Les spectres 1D existent sous 2 formats :

- sur chacun des points du maillage "gridded" (plus de 100 000 points de sortie)

- sur les points de sorties spectres 2D "bulk".

3.3.2. Description du contenu des fichiers spectres en fréquence

3.3.2.1. spectres en fréquence "gridded"

Dans le fichier de spectre 1D "gridded" se trouve uniquement la variable ef qui représente la densité d'énergie des états de mer par fréquence, toutes directions confondues.

3.3.2.2. spectres en fréquence "bulk"

Les spectres en fréquences bulk sont localisés sur la même grille que les spectres 2D. Les données spectrales peuvent dépendre de différentes fréquences :

- Frequency : représente les valeurs de la fréquence centrale allant de 1 à n.

- Frequency1 : les valeurs des basses fréquences obtenues de la manière suivante : freq1(i)=freq(i)-0.5*(freq(i)-(freq(i)/XFR)) (with XFR=1.1)

freq1(1)=freq(1)

- Frequency2 : représente les valeurs des hautes fréquences obtenues de la manière suivante : freq2(i)=freq(i)+0.5*(-freq(i)+(freq(i)*XFR)) (with XFR=1.1) freq2(n)=freq(n)

Le tableau ci-après présente les différentes variables contenues dans le fichier :

Variable Name	Standard Name	Units	Variable Name	Standard Name	Units
Ef	spectre 1D	m²s	curr	vitesse des courants	m s ⁻¹
th1m	mean wave direction for first frequency	degree	currdir	direction des courants	degree
th2m	mean wave direction for second frequency	s^{-1}	hs	hauteur significative	m
sth1m	mean wave spreading direction for first frequency	degree	fp	frequence de pic	s-1
sth2m	mean wave spreading direction for second frequency	degree	f02	spectral estimate of mean zero-crossing frequency (fm02)	s-1
depth	depth	m	f0m1	spectral estimate of mean zero-crossing frequency (f0-1)	s-1
u10m	wind speed at 10m	m/s	th1p	mean wave direction from spectral moments at spectral peak	degree
udir	wind direction	degree	sth1p	from spectral moments at spectral peak	degree
th1tot	mean wave direction from spectral moments	degree	sth1tot	mean wave direction from spectral moments	degree

TABLEAU XVIII Variables Presentes Dans le Fichier de Spectre 1D "Bulk"

3.3.3. Nomenclature des fichiers spectres en fréquence

3.3.3.1. spectre en fréquence "gridded"

dossier : (\\XX) /.../GRIDDED/yyyy/mm/

nom du fichier : HOMERE_NGUG-v3_yyymm_ef.nc

exemple : Pour obtenir le fichier spectre en fréquence sur toute la zone NGUG pour le mois de janvier 2009, il faut aller dans le dossier (\\XX) /.../GRIDDED/2009/01/

le fichier portera le nom de HOMERE_NGUG-v3_200901_ef.nc

3.3.3.2. spectre en fréquence "bulk"

dossier: (\\XX) /.../BULK/yyyy/mm/

nom du fichier : HOMERE_NGUG-v3_{nom du point}_yyyymm_freq.nc

exemple : Pour obtenir le fichier de spectre en fréquence du point portant le nom 62069 pour le mois de janvier 2009, il faut aller dans le dossier (\\XX) /.../BULK/2009/01/ Le fichier portera le nom de HOMERE_NGUG-v3_62069_200901_freq.nc

NB : certains noms de points comptent plus de 12 caractères et ont donc été automatiquement coupés par WWIII[®].

4. Validation du Modèle

4.1. Comparaison avec les mesures in situ

4.1.1. Description des jeux de données

Des comparaisons ont été réalisées avec les bouées du réseau CANDHIS du CETMEF (Centre d'Etudes Techniques Maritimes et Fluviales) et les bouées de Météo-France le long de la côte française (Fig. 14). Les mesures de vagues sont enregistrées sur des durées de 20 à 30 minutes, deux fois par heure.

Fig. 14 : Mesures in situ utilisées pour la validation du modèle

4.1.2. Méthodologie

Les données utilisées pour la comparaison avec les mesures in situ sont les paramètres dérivés des spectres directionnels. Mois par mois, sur la durée de mesures des bouées, la hauteur significative de la houle est calculée à partir des spectres directionnels du modèle pour chaque point de bouée. Elle est ensuite comparée à la hauteur significative mesurée par la bouée en calculant le coefficient de corrélation (r), le Scatter Index (SI), le biais moyen (b) et l'erreur quadratique moyenne centrée

(CRMSE) mais aussi en représentant graphiquement le digramme Quantile-Quantile, le "Scatter digram" ainsi qu'une comparaison temporelle des Hs (cf. figure 15).

$$\rho = \frac{\overline{(y_m - \overline{y_m})(y_o - \overline{y_o})}}{\left(\sqrt{(y_m - \overline{y_m})^2}\right)\left(\sqrt{(y_o - \overline{y_o})^2}\right)}$$
$$SI = \frac{\sqrt{\overline{((y_m - \overline{y_m}) - (y_o - \overline{y_o}))^2}}}{\overline{y_o}}$$
$$b = \overline{y_m - \overline{y_o}}$$
$$CRMSE = \frac{\sqrt{\overline{((y_m - \overline{y_m}) - (y_o - \overline{y_o}))^2}}}{\sqrt{(y_o - \overline{y_o})^2}}$$

4.1.3. Résultats

Le tableau suivant représente l'ensemble des comparaisons effectuées avec les données in situ. Les figures de comparaison sont disponibles, pour chacune des bouées, mensuellement, annuellement et sur l'ensemble de la période de comparaison.

TABLEAU XIX						
Duov	VALIDATIONS E	FFECTUEES AVEC LES ME	S I (m)	CDMSE		
<u> </u>	<u>Feriou</u>	D (III)	5.1. (III)		<u> </u>	
62059	2005 - 2012	0.08	0.17	0.25	0.92	
62060	2009	0.03	0.18	0.24	0.93	
62061	2004-2012	0.08	0.18	0.22	0.94	
62064	2008-2010	-0.005	0.27	0.14	0.97	
62067	2005-2012	0.17	0.17	0.18	0.96	
62069	2008-2012	0.05	0.2	0.13	0.97	
Anglet	2009-2012	-0.08	0.3	0.17	0.96	
Belle-Ile	2010-2012	0.018	0.26	0.12	0.97	
DWBERTHE	2004	0.08	0.15	0.22	0.98	
Havre	2010	-0.09	0.2	0.22	0.93	
Minquiers	2008-2009	0.02	0.19	0.16	0.94	
Minquiers (N)	2011-2012	0.16	0.17	0.18	0.95	
Oleron	2010-2011	0.04	0.26	0.13	0.97	
Penmarc'h	2009-2010	0.12	0.35	0.11	0.98	
Plateau du	2010-2012	0.03	0.2	0.13	0.97	
Four						
Ruytingen	2010	-0.052	0.3	0.26	0.88	
Vergoyer	2010-2012	-0.06	0.22	0.2	0.94	

Fig. 15 : Exemple de comparaison graphique entre la bouée 62067 et le modèle.

4.2. Comparaison avec les mesures des satellites

4.2.1. Description des jeux de données

Le maillage du modèle est suffisamment raffiné pour permettre la validation du modèle avec les satellites. La figue 16 représente les traces de passage des satellites sur la période 2007-2009. Les données qui ont servi à la validation sont des jeux de données des missions ERS1/2, JASON 1/2, ENVISAT, GFO, POSEIDON, TOPEX. Les caractéristiques de ces missions sont représentées dans le Tableau XX. Les paramètres ont été préalablement calibrés et corrigés [Queffeulou, 2012].

Fig. 16 : Traces des passages des satellites sur le domaine de calcul entre 2007 et 2009

Num.	Satellite	Period	Circle Period	Official Sources
Sat.			(Days)	
1	ERS1	1991-1996	35	CERSAT
2	ERS2	1995-2003	35	CERSAT
3	Envisat	2002 onwards	35	ESA
4	TOPEX	1992-2005	10	AVISO, PODEX
5	POSEIDON			
6	Jason 1	2001 onwards	10	AVISO, PODAAC
7	GFO	2000-2008	17	NOAA
8	Jason 2	2008 onwards	10	NOAA,
				EUMESAT

TABLEAU XX Caractéristiques des Différentes Missions Satellites

4.2.2. Méthodologie

Les données utilisées pour ces comparaisons sont les champs de paramètres globaux sortis sur tous les points du maillage. Le pas de sortie du modèle est de 1 heure. Chaque point du maillage étant sur une trace satellite a été individuellement interpolé dans le temps pour correspondre à la date de passage du satellite. Ces résultats ont été transcrit dans les fichiers trackmod{num_sat}.txt, où {num_sat} représente le numéro du satellite (cf. colonne Num. Sat. du Tableau XX).

Une fois la colocalisation des données effectuée, les erreurs statistiques SI, Mean bias, coefficient de corrélation et CRMSE sont effectués.

4.2.3. Résultats

Les tableaux suivant récapitulent l'ensemble des comparaisons effectuées avec les satellites pour la hauteur significative des vagues (tableau XXI) et pour les vitesses de vent (tableau XXII). De manière générale, la corrélation entre les données des satellites et les données du modèle est bonne, en particulier pour les Hs.

COMPARAISON DES HS AVEC LES DONNÉES SATELLITES						
Satellite	Period	b (m)	S.I. (m)	CRMSE	r	
ERS 1	1994	0.11	0.37	0.15	0.97	
ERS 2	1995-2010	0.072	0.32	0.13	0.97	
ENVISAT	2002-2012	0.05	0.27	0.11	0.98	
TOPEX	1994-2005	0.076	0.28	0.12	0.98	
POSEIDON	1994-2000	0.13	0.32	0.13	0.97	
JASON 1	2002-2012	0.11	0.28	0.11	0.98	
GFO	2000-2008	4.1	0.29	0.11	0.98	
JASON 2	2008-2012	0.09	0.29	0.11	0.98	

TABLEAU XXI Comparaison des Hs avec les Données Satelli

TABLEAU XXII

COMPARAISON DES VITESSES DE VENT AVEC LES DONNÉES SATELLITES

Satellite	Period	b (m/s)	S.I. (m/s)	CRMSE	r
ERS 1	1994	-0.27	1.48	0.17	0.93
ERS 2	1995-2010	0.37	1.56	0.19	0.91
ENVISAT	2002-2012	0.41	1.55	0.19	0.91
TOPEX	1994-2005	0.25	1.61	0.19	0.9
POSEIDON	1994-2000	0.87	1.97	0.22	0.87
JASON 1	2002-2012	0.57	1.58	0.19	0.9
GFO	2000-2008	0.10	1.73	0.19	0.9
JASON 2	2008-2012	0.01	1.72	0.21	0.88

4.3. Comparaison avec le modèle numérique de la NOAA

4.3.1. Description des jeux de données

La base de données de hindcast d'états de mer de 1997 à nos jours de la NOAA, disponible et facilement accessible a également été utilisée pour la validation. Le modèle global a une résolution de $1 \ge 1.25^{\circ}$ (grille 1). Il a été raffiné à une résolution de 0.5° depuis 2005 (grille2). Les comparaisons des hauteurs significatives de vagues ont été limitées aux sites en profondeur intermédiaire et en eau profonde.

Fig. 17 : Sites retenus pour les validations entre HOMERE et la NOAA

4.3.2. Méthodologie

Les hauteurs significatives du modèle sont lues directement dans les fichiers spectres 1D "bulk" (cf. paragraphe 3.3.2). Les deux modèles ont le même pas de temps. Des comparaisons mensuelles, annuelles et sur la totalité de la période disponible des modèles ont été effectuées de la même façon que pour les mesures in situ.

4.3.3. Résultats

Les comparaisons effectuées pour chacune des grilles du modèle de la NOAA sont résumées dans le Tableau XXIII.

De manière général, sur l'ensemble des points comparés, il y a une bonne corrélation entre les deux modèles (r > 0.94).

COMPARAISON MODELES NOAA ET HOMERE (HS)						
Grille	Periode	b (m)	S.I. (m)	CRMSE	r	
Grille 1	1997-2010	[-0.15 0.22]	[0.24 0.39]	[0.1 0.17]	[0.95 0.98]	
Grille 2	2005-2012	[-0.07 0.09]	[0.26 0.3]	[0.11 0.19]][0.96 0.97]	
Pts communs	1997-2012	[-0.11 0.09]	[0.28 0.37]	[0.11 0.14]][0.94 0.98]	
grille 1 et 2						

TABLEAU XXIII

lfremer

Références

- Ardhuin, F, W. C. O'Reilly, T. H. C. Herbers, and P. F. Jessen (2003). Swell transformation across the continental shelf. Part I: Attenuation and directional broadening. J. Phys. Oceanogr., 33:1921–1939.
- Ardhuin F., B. Chapron and F. Collard (2009a). Observation of swell dissipation across oceans. *Geophys. Res. Lett.*. **36**:L06607.
- Ardhuin F., E. Rogers, A. Babanin, J.-F. Filipot, R. Magne, A. Roland, A. V. der Westhuysen, P. Queffeulou, J.-M. Lefevre, L. Aouf, F. Collard (2010). Semi-empirical dissipation source function for wind-wave models: part 1, definition, calibration and validation at global scales. J. Phy. Oceanogr. 40:1917-1941.
- Charnock, H. (1955). Wind stress on a water surface. Q. J. R. Meteor. Soc., 81:639-640.
- Courtier, P., C. Freydier, J.-F.Geleyn, F. Rabier and M. Rochas (1994). The ARPEGE project at Météo-France. in ECMWF Seminar Proceedings: Numerical methods in atmospheric models, II:193-231.
- Courtier P, Thepaut J, Hollingsworth A. (1994). A strategy for operational implementation of 4D-VAR, using an incremental approach. *Q J R Meteor. Soc.*, **120**:1367–1387.
- Grant, W.D. and Madsen, O.S. (1982). Movable bed roughness in unsteady oscillatory flow. J. *Geophys. Res.*, 87:0148-0227.
- Hasselmann S., K. Hasselmann, J. Allender ans T. Barnettn (1985). Computation and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. part 2: Parameterizations of the nonlinear energy transfer for application in wave model. J. Phys. Oceanogr., 15:1378-1391.
- Lazure P., Dumas F. (2008). An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). *Advances In Water Resources*, **31**(2):233-250.
- Lecornu F., Paillet J., Ravenel H. (2008). PREVIMER-Coastal observations and forecast summary of 2 years demonstration and future perspectives. Brest : Proc, Operational Coastal Oceanography conf.
- Loubrieu B., Bourillet J.F., Moussat E. (2008). Bathy-morphologie régional du Golfe de Gascogne et de la Manche, modèle numérique 2008. Brest : Ifremer, Tech. Rep., DCD/GM/CTDI/08-01.
- Lyard, F., Lefèvre, F., Letellier, T., Francis, O. (2006). Modelling the global ocean tides: modern insights from FES 2004. *Ocean Dynamics*, **56** (**5-6**):394-415.
- Madsen, P.A., Y.-K. Poon and H.C. Graber (1988). Spectral wave attenuation by bottom friction: Theory. Proc. 21th Int. Conf. Coastal Engineering, ASCE, 492-504.
- Muller H., Pineau-Guillou L., Idier D. (2012). Storm surge modeling strategy along the French (Atlantic and English Channel) coast. Brest : Jonsmod 2013 proceedings Ocean Dynamics.
- Queffeulou P. and D. Croizé-Fillon (2012). Global altimeter SWH data set. Brest : Ifremer, Tech. Rep.

- Roland A. (2008). Development of WWM II: Spectral wave modelling on unstructured meshes. Ph. D. thesis, Inst. of Hydraul. and Wave Resour. Eng., Techn. Univer. Darmstadt, Germany.
- Roland A., A. Cucco, C. Ferrarin, T.-W. Hsu, J.-M. Liau, S.-H. Ou, G. Umgiesser, and U. Zanke, (2009). - On the development and verification of 2-D coupled wave-current model on unstructured meshes. J. Mar. Syst., 78:S244-S254.
- Saha S. et al, (2010). The NCEP Climate Forecast System Reanalysis. *Bul. Amer. Meteor. Soc.*, **91**:1015-1057.
- Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME-France convective scale operational model.Mon Wea Rev 139:976–991.
- Simon (2007). La marée océanique côtière. Paris : Oceanographic Institute Editions, 433.
- Tolman, H.L. (1995). Subgrid modeling of moveable-bed bottom friction in wind wave models. *Coastal Eng.*, **26**:57–75.
- Tolman, H.L. (2009a). User manual and system documentation of WAVEWATCH III[®] version 3.14, Tech Note 276, NOAA/NWS/NCEP/MMAB, 194 pp + Appendices
- Wilson, KC (1989). Friction of wave induced sheet flow. Coastal Eng., 12:371-379.

ANNEXES

Meshin : critères choisis pour le raffinement du maillage :

&GENERAL LPREPROC = F ! do onlypreprocessing. stop after write init.dat =T, LXYZ LISLAND = T. LSTRUCT = F. LPOLY = T, ! Use polygons for further refinement. LRIVER = F ! Read river polygons LINVZ =F, LLL = T. LLONLAT = F, ! Interchange of x and y coordinate in bathymetry = T, ! enables LTRIEMBEDDED embedded triangle interface LREADEXISTMESH = F, ! read existing mesh, coordinates and elements from depthfile LBINARYOUT = T, ! write out the bathymetry in binary format to binaryfile = F, ! read bathy in LBINARYIN binary format to binaryfile **FNAMEITER** = 'iter', ! file name for iter output file = 'final',! file name FNAMEFINAL for final output file **FNAMEBATHY** = 'bathy',!file name for bathy file **FNAMEINIT** = 'init', !file name for init output file **ISLANDNAME** = 'insel.dat',!file name for island data file **STRUCTNAME** = 'struct.dat',!file name for struct data file BOUNDARYNAME = 'rand.dat',! file name of boundary data file DEPTHFILE = 'xyz.dat',!file name of bathymetry data file **BINARYFILE** = 'binary.dat',!file name of bathymetry in binary file format **IBOUNDFORMAT** = 0, ! 0 ASCII /1 KML - format of polygonfiles

CRITERIAFILE = 'coarscriteria.dat', ! File name of criteria file which contains criteria for file coarsening OFFSET Z = 8, ! Offset for Zcoordinate e.g. MWL + Offset OUTPUTFORMAT = 'XFN' ! possible options are: XFN, TRIANGLE, GR3 and MSH / &INTERPOLATION = T, !enables iterative LITER refinement NITER = 5, !number of iteration = F, ! interpolate LSTRUCTINTER on the struct LTAKESTRUCTDEPTH = F, !take depth from struct file LSTRUCTPRDEP = F, !enable to prescribe a constant depth for struct DEPTHSTRUCT 10.0000000000000E+000, ! value of prescribed struct depth in m LISLANDINTER = F, LTAKEISLANDDEPTH = T, ! Added2012/08/23 LISLANDPRDEP = F, DEPTHISLAND = 0.00000000000000000E+000, LBOUNDARYINTER = F, LTAKEBOUNDDEPTH = T, LBOUNDPRDEP = F, DEPTHBOUND = 0.000000000000000000E+000, LBOUNDARYEXP = T, LFASTSEARCH =T. SMEMORY = 1024,

&REFINEMENT !GLOBAL

LINIT		= F	,! Initital	regular
mesh,	may	cause	problems	when

boundary points and initial mesh points are equal ... experimental LCFL =F, LDZ =T, ! FALSE => LMINVAL = F, AREA=MAX(AREA_CFL,AREA_DZ) otherwise MIN LSTAG = F. ISELECT =2.DT = 30.DTTHETA = 30.0 ,! Max. DT for Theta space $A_n = A_0 + c$ theta / dtheta DX INIT = 10000.0,! resolution of the initial regular mesh ... ALPHA = 1.0= 1.0BETA MAXDZ =5.0, ! Max. dz in element, the new area is scaled according to $A_n = MAXDZgl/{MAXDZ}j * A_o$ DMIN_CFL = 0. ,! Min. depth for CFL refinement DMAX CFL = 30.0 ,! Max. depth for CFL refinement DMIN DZ = 2.0 ,! Min. depth for DZ refinement DMAX_DZ 120.0 ,! Max. =depth for DZ refinement MIN_EDGE 600.0 ,! Global = min. edge length MAX_EDGE = 8000.0 ,! Global max. edge length (... these crteria are only weakly enforced during the iteration procedure) MIN_EDGE_DZ 1000.0 ,! Min. = edge length for DZ refinement MAX_EDGE_DZ = 6000.0 ,! Max. edge length for DZ refinement 2000.0 .! Min. MIN EDGE CFL = edge length for CFL refinement $MAX_EDGE_CFL = 6000.0$, ! Max. edge length for CFL refinement WAVEPERIOD = 20.0 ,! Target wave period for Iselect = 2**IWAVESP** = 2 ,! Wave speed celerity. 1 = shallow water wave, 2 =wave energy according dispersion relation, 3 = phase speed

MDC = 36.&TRIANGLEOPTIONS PARABATHY = 'c' PARABATHYORIG = 'jc' PARAITER = 'ajDrpq30' PARAINIT ='jDpq20' / &SMOOTH $=\mathbf{F}$ **LSMOOTH** LSMOOTHITER =TSMOOTHFAC = 0.8,&COARSENING LFILECRITERIA = F, enable file criteria coarsening from "CRITERIAFILE" LBOUNDARYCOARS = F, ! enables generally coarsening on boundary polygon LISLANDCOARS = F, ! enables generally coarsening on island polygons LDIST_METHOD = F, ! turns on distance method of coarsening process LANGLE_METHOD_3P = F, ! turns on distance method of coarsening process LARROW_METHOD = F, ! turns on arrow method of coarsening process DISTTOL = 500, ! Tolerance value for distance method, always in meters... ANGLE = 28, ! Boundary angle value for angle method, always in degrees ARROWTOL = 2 ! Value for arrow method, always in meters... PEAKANGLE = 30., ! Boundary anglefor peak angle routine ITER_PEAK = 4, ! Number of iterations for peak angle routine, value 0 disable the routine /

®MESH LREGMESH = F, LLOGX = F, LLOGY = F,

DX_REG = 0, DY_REG = 0, XMIN_REG =0, XMAX_REG =0, YMIN_REG =0, YMAX_REG =0, FAK_LOG = 0.,

&SORTING

LSORT = T, ! Use sorting routine to optimize chash dismisses ISORTSTYLE = 1, ! Sortstyle 1 (ascending sort), 5 (Hilber curve sorting) SEARCHACCUR = 0.001 ! Accuracy for searchalgorithm /

&DEBUG

LINITOUT = F LITEROUT = T LBATHYOUT = F LTIMINGS = F LLOG = F

&REFINEMENT !zone de Cherbourg

LINIT $= \mathbf{F}$,! Initital regular mesh, may cause problems when boundary points and initial mesh points are equal ... experimental = T. LCFL LDZ = T. LMINVAL = T, ! FALSE => AREA=MAX(AREA_CFL,AREA_DZ) otherwise MIN LSTAG = F. ISELECT =2.= 30.DT DTTHETA = 30.0 ,! Max. DT for Theta space $A_nj = A_oj *$ ctheta / dtheta = 10000.0, ! resolution of DX INIT the initial regular mesh ... ALPHA = 1.0= 1.0 , BETA

MAXDZ 6.0, ! Max. dz in = element, the new area is scaled according to $A_n = MAXDZgl/{MAXDZ}j * A_o$ DMIN CFL 2. ,! Min. depth = for CFL refinement DMAX CFL 30.0 ,! Max. =depth for CFL refinement DMIN_DZ 2.0,! Min. depth =for DZ refinement DMAX_DZ 60.0 ,! Max. =depth for DZ refinement MIN_EDGE 300.0 ,! Global = min. edge length MAX_EDGE = 10000.0,! Global max. edge length (... these crteria are only weakly enforced during the iteration procedure) MIN_EDGE_DZ = 500.0 ,! Min. edge length for DZ refinement MAX_EDGE_DZ = 6000.0,! Max. edge length for DZ refinement MIN EDGE CFL = 800.0 ,! Min. edge length for CFL refinement $MAX_EDGE_CFL = 3000.0$,! Max. edge length for CFL refinement WAVEPERIOD = 18.0 ,! Target wave period for Iselect = 2**IWAVESP** = 2,! Wave speed celerity. 1 = shallow water wave, 2 =wave energy according dispersion relation, 3 = phase speed MDC = 36. /

&REFINEMENT !Bretagne-Gasgogne

LINIT $= \mathbf{F}$,! Initital regular mesh, may cause problems when boundary points and initial mesh points are equal ... experimental LCFL =T, LDZ = T, LMINVAL = T, = F. LSTAG =2.ISELECT DT =30. DTTHETA 30.0 .! Max. DT =for Theta space $A_n = A_0 + c$ theta / dtheta

DX_INIT = 10000.0,! resolution of the initial regular mesh ... = 1.0ALPHA BETA = 1.0MAXDZ = 6.0, ! Max. dz in element, the new area is scaled according to $A_n = MAXDZgl/{MAXDZ}j * A_o$ DMIN_CFL 5. ,! Min. depth = for CFL refinement DMAX_CFL 50.0 ,! Max. =depth for CFL refinement DMIN DZ =2.0,! Min. depth for DZ refinement DMAX DZ =120.0 ,! Max. depth for DZ refinement MIN EDGE = 300.0 ,! Global min. edge length MAX_EDGE = 12000.0 ,! Global max. edge length (... these crteria are only weakly enforced during the iteration procedure) MIN EDGE DZ =500.0 ,! Min. edge length for DZ refinement MAX_EDGE_DZ = 6000.0 ,! Max. edge length for DZ refinement MIN_EDGE_CFL =550.0 ,! Min. edge length for CFL refinement $MAX_EDGE_CFL = 3000.0$,! Max. edge length for CFL refinement WAVEPERIOD = 22.0 ,! Target wave period for Iselect = 2**IWAVESP** = 2,! Wave speed celerity. 1 = shallow water wave, 2 =wave energy according dispersion relation, 3 = phase speed MDC = 36./

&REFINEMENT ! Baie des Veys LINIT $=\mathbf{F}$.! LCFL = T, LDZ = T. LMINVAL = T. ! LSTAG = F. ISELECT = 2.= 10, !DT DTTHETA 30.0,! =

DX_INIT = 10000.0,! ALPHA = 1.0= 1.0BETA MAXDZ 1.5, ! =DMIN CFL = 0.! DMAX_CFL 15.0 ,! =DMIN_DZ 15.0, ! 0 = DMAX_DZ = 100.0,! MIN_EDGE = 300.0.! MAX_EDGE = 1000.0,! MIN_EDGE_DZ = 400.0,! $MAX_EDGE_DZ = 600.0,!1000$ $MIN_EDGE_CFL = 400.0,!$ $MAX_EDGE_CFL = 1500.0, !3000$ WAVEPERIOD = 30.0.! **IWAVESP** = 2.! MDC = 36.&REFINEMENT ! Baie de Seine LINIT $=\mathbf{F}$,! LCFL =T.LDZ = T. LMINVAL = T. ! LSTAG = F. ISELECT =2,= 10, !DT DTTHETA = 30.0,! = 10000.0,! DX_INIT ALPHA = 1.0= 1.0BETA MAXDZ = 1.0, ! DMIN CFL 0.! = DMAX CFL 14.0 ,! = 10.0, ! 0 DMIN_DZ = DMAX_DZ = 100.0,! MIN_EDGE =300.0 .! MAX_EDGE = 500.0.!MIN_EDGE_DZ = 400.0,! MAX EDGE DZ = 800.0, 1000 $MIN_EDGE_CFL = 400.0$,! $MAX_EDGE_CFL = 1500.0 , ! 3000$ WAVEPERIOD = 18.0,! **IWAVESP** = 2.! MDC = 36.&REFINEMENT ! Baie de Seine2 $=\mathbf{F}$ LINIT ,! LCFL =T,


```
LDZ
        = T.
LMINVAL
          = T.
                   !
LSTAG
          = F.
ISELECT
          = 2.
       = 10. !
DT
DTTHETA
                30.0,!
             =
DX_INIT
           = 10000.0,!
ALPHA
          = 1.0
               ,
BETA
         = 1.0
MAXDZ
            =
               1.0, !
DMIN_CFL
             =
                 0,!
DMAX_CFL
                    14.0 .!
              =
DMIN_DZ
             =
                 20.0, ! 0
DMAX_DZ
             = 100.0,!
MIN EDGE
                 300.0.!
             =
MAX EDGE
              = 500.0,!
MIN\_EDGE\_DZ =
                   300.0,!
MAX\_EDGE\_DZ = 800.0,!1000
MIN_EDGE_CFL =
                   300.0.!
MAX\_EDGE\_CFL = 1500.0 ,! 3000
WAVEPERIOD =
                   18.0.!
IWAVESP
             = 2
                   .!
MDC
         = 36.
/
&REFINEMENT ! Mont Saint Michel
         =\mathbf{F}
LINIT
               .!
LCFL
         =T.
LDZ
        =T,
           = T.
LMINVAL
                   1
LSTAG
          = F.
ISELECT
          = 2.
DT
       = 10.!
DTTHETA
                30.0,!
             =
           = 10000.0,!
DX INIT
ALPHA
          = 1.0
                ,
BETA
         = 1.0
               1.0, !
MAXDZ
            =
DMIN_CFL
             =
                 4. ,!
DMAX CFL
                    20.0 .!
              =
DMIN DZ
                20.0, ! 0
             =
DMAX DZ
             =
                 40.0,!
                 300.0,!
MIN EDGE
             =
MAX EDGE
              = 1000.0.!
MIN_EDGE_DZ =
                   500.0,!
MAX\_EDGE\_DZ = 2000.0, !1000
MIN_EDGE_CFL =
                   300.0.!
MAX\_EDGE\_CFL = 1500.0, !3000
WAVEPERIOD
                   15.0,!
              =
```

IWAVESP = 2,! **MDC** = 36.&REFINEMENT ! Arcachon-Gironde LINIT = F,! Initital regular mesh, may cause problems when boundary points and initial mesh points are equal ... experimental = T. LCFL LDZ =T, LMINVAL = T, LSTAG = F. ISELECT = 2.DT =30, DTTHETA = 30.0 .! Max. DT for Theta space $A_n = A_0 + c$ + ctheta / dtheta = 10000.0,! resolution of DX_INIT the initial regular mesh ... ALPHA = 1.0BETA = 1.0MAXDZ = 6.0. ! Max. dz in element, the new area is scaled according to $A_n = MAXDZgl/{MAXDZ}j * A_o$ DMIN CFL 5. ,! Min. depth = for CFL refinement DMAX_CFL 30.0 ,! Max. =depth for CFL refinement DMIN_DZ 2.0 ,! Min. depth =for DZ refinement DMAX DZ = 60.0,! Max. depth for DZ refinement MIN EDGE 600.0 ,! Global = min. edge length MAX_EDGE = 5000.0 ,! Global max. edge length (... these crteria are only weakly enforced during the iteration procedure) MIN_EDGE_DZ 800.0 ,! Min. = edge length for DZ refinement MAX_EDGE_DZ = 6000.0,! Max. edge length for DZ refinement MIN EDGE CFL = 600.0 ,! Min. edge length for CFL refinement MAX_EDGE_CFL = 4000.0,! Max. edge length for CFL refinement WAVEPERIOD =18.0 ,! Target wave period for Iselect = 2

IWAVESP = 2 ,! Wave speed celerity. 1 = shallow water wave, 2 =wave energy according dispersion relation, 3 = phase speed MDC = 36. / &REFINEMENT ! Bassin d'Arcachon LINIT = F,! Initital regular mesh, may cause problems when boundary points and initial mesh points are equal ... experimental LCFL = T, LDZ =T, LMINVAL ! FALSE => = T, AREA=MAX(AREA_CFL,AREA_DZ) otherwise MIN LSTAG = F. ISELECT = 2, = 9, !10 DT

= 30.0,!DTTHETA DX_INIT = 10000.0,! ALPHA = 1.0, BETA = 1.0= 3.0, ! MAXDZ DMIN_CFL = 0.5,! DMAX_CFL = 30.0 ,! DMIN_DZ = 2.0,! = 20.0,!DMAX_DZ 200.0,! MIN_EDGE = MAX_EDGE = 400.0,! $MIN_EDGE_DZ = 200.0,!$ $MAX_EDGE_DZ = 400.0,!$ MIN_EDGE_CFL = 300.0,! MAX EDGE CFL = 500.0,! 6000 WAVEPERIOD = 20.0,!25 **IWAVESP** = 2,! MDC =36,

/